Multi-Strategy coevolving aging Particle Optimization

نویسندگان

  • Giovanni Iacca
  • Fabio Caraffini
  • Ferrante Neri
چکیده

We propose Multi-Strategy Coevolving Aging Particles (MS-CAP), a novel population-based algorithm for black-box optimization. In a memetic fashion, MS-CAP combines two components with complementary algorithm logics. In the first stage, each particle is perturbed independently along each dimension with a progressively shrinking (decaying) radius, and attracted towards the current best solution with an increasing force. In the second phase, the particles are mutated and recombined according to a multi-strategy approach in the fashion of the ensemble of mutation strategies in Differential Evolution. The proposed algorithm is tested, at different dimensionalities, on two complete black-box optimization benchmarks proposed at the Congress on Evolutionary Computation 2010 and 2013. To demonstrate the applicability of the approach, we also test MS-CAP to train a Feedforward Neural Network modeling the kinematics of an 8-link robot manipulator. The numerical results show that MS-CAP, for the setting considered in this study, tends to outperform the state-of-the-art optimization algorithms on a large set of problems, thus resulting in a robust and versatile optimizer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Economic Dispatch of Thermal Units with Valve-point Effect using Vector Coevolving Particle Swarm Optimization Algorithm

Abstract: This paper is intended to reduce the cost of producing fuel from thermal power plants using the problem of economic distribution. This means that in order to determine the share of each unit, considering the amount of consumption and restrictions, including the ones that can be applied to the rate of increase, the prohibited operating areas and the barrier of the vapor barrier, the pr...

متن کامل

Broadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach

While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...

متن کامل

Implementation of Reliability-Centered Maintenance for transmission components using Particle Swarm Optimization

In a deregulated power industry, a maintenance strategy is of critical importance for transmission systems composed of aging components. Such a strategy can provide significant cost savings by optimizing maintenance decisions for power system operation. This paper presents a Reliability-Centered Maintenance (RCM) model for developing a maintenance strategy in a transmission system. This model i...

متن کامل

Robust multi-period portfolio model based on prospect theory and ALMV-PSO algorithm

The studies of behavioral finance show that the cognitive bias plays an important role in investors’ decision-making process. In this paper, we propose a new robust multi-period model for portfolio optimization that considers investors’ behavioral factors by introducing dynamically updated loss aversion parameters as well as a dynamic value function based on prospect theory. We also develop a n...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of neural systems

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2014